M.Sc. Mathematics

Programme Outcomes (PO)

PO No.	Upon completion of M.Sc. Degree programme, the graduates will be able to:
PO-1	Understand the basic concepts, theorems, fundamental principles and the scientific theories related to various scientific phenomena and their relevancies in the day-to-day life.
PO-2	Acquire the knowledge with facts related to various subjects in pure sciences such as Mathematics, Physics, Chemistry, Botany, Zoology etc.
PO-3	Apply the knowledge of Mathematics, in all the fields of learning including higher research and its extensions.
PO-4	Innovate, invent and solve complex mathematical problems using the knowledge of pure and applied mathematics.
PO-5	Explain the knowledge of contemporary issues in the field of Mathematics and applied sciences.
PO-6	Crack lectureship and fellowship exams approved by UGC like CSIR – NET and SET.

Programme Specific Outcomes (PSO)

PSO No.	Upon completion of M.Sc. Mathematics Degree programme, the graduates will be able to:	Mapping
PSO-1	Understand the basic concepts, fundamental properties and application of theorem in-depth on the subject.	PO-1
PSO-2	Apply their knowledge in various concepts involved in algebra, differential equations and graph theory.	
PSO-3	Demonstrate their talent in writing mathematical proofs.	PO-4, PO-5
PSO-4	Create and analyze mathematical models by applying the theorem statement for the real life situation.	PO-4
PSO-5	Solve problems in competitive exams in order to brighten their future and academic carrier.	PO-4, PO-6
PSO-6	Analyze the statistical survey data and interpret the conclusion using statistical techniques	PO-3
PSO-7	Choose excellent career opportunities in Research, Teaching and Technical Institutions.	PO-3, PO-6
PSO-8	Apply their knowledge in computer programming.	PO-3
PSO-9	Pursue higher degree courses M.Phil., Ph.D in pure and applied mathematics.	PO-3
PSO-10	Interpret their knowledge to qualify CSIR-NET, GATE and SET exams.	PO-6

CBCS SYLLABUS FOR M.Sc., MATHEMATICS

I SEMESTER				
DSC 1	GROUPS, RINGS & FIELDS	18PCMA11		
Hrs / Week : 6	Hrs / Sem : 6 x 15 = 90 Hrs / Unit :	:18 Credit : 4		

CO No.	Upon completion of this Course, students will be able to:	PSO addressed	Blooms taxonomy classification
CO-1	Understand the concepts of Sylow's theorem, Class equations and finite Abelian groups.	1	Understanding
CO-2	Explain the fundamental concepts of algebra.	1 <u>.2</u>	Understanding
CO-3	Apply the Galois theory for finding the roots of the polynomial.	2,3	Applying
CO-4	Determine the properties of roots of the polynomial.	10	Evaluating
CO-5	Recall the importance of extension fields and its use.	2 <u>.</u> 4	Remembering

	I SEMESTER		
DSC 2	REAL ANALYSIS	I	18PCMA12
Hrs / Week : 6	Hrs / Sem : 6 x 15 = 90	Hrs / Unit :18	Credit : 4

CO No.	Upon completion of this Course, students will be able to:	PSO addressed	Blooms taxonomy classification
CO-1	Understand the real and complex number systems, point set topology and metric spaces.	1	Understanding
CO-2	Analyze the various types of sequences and series and differentiate them with their practical knowledge.	2,7	Analyzing
CO-3	Distinguish continuous functions and differentiable functions and also find relations between the functions.	2	Analyzing
CO-4	Estimate the higher order derivatives using Taylor's theorem and writing solution in good manner.	10	Creating
CO-5	Utilize skills in mathematical analysis through the disciplinary.	2,9	Applying

I SEMESTER			
DSC 3	MATHEMATICAL STAT	ISTICS	18PCMA13
Hrs / Week : 6	Hrs / Sem : 6 x 15 = 90	Hrs / Unit : 18	Credit : 4

CO No.	Upon completion of this Course, students will be able to :	PSO addressed	Blooms taxonomy classification
CO-1	Understand mathematical expectations and Chebyshev inequality.	1	Understanding
CO-2	Recall t and F distributions and their applications.	4,6	Remembering
СО-3	List out the MGF technique and derive Central Limit theorem.	3,4	Remembering, Creating
CO-4	Apply Poisson distribution, Gamma distribution and Chi-square distribution to solve problems.	2,6	Applying
CO-5	Outline the concepts of marginal and Conditional distributions, correlation coefficient and stochastic independence.	1,10	Understanding

DSC 4ORDINARY AND PARTIAL
DIFFERENTIAL EQUATIONS18PCMA14Hrs / Week : 6Hrs / Sem : 6 x 15 = 90Hrs / Unit : 18Credit : 4

CO No.	Upon completion of this Course, students will be able to:	PSO addressed	Blooms taxonomy classification
CO-1	Evaluate the general solutions of first-order, second- order, and higher-order homogeneous and nonhomogeneous differential equations by manual and technology-based methods.	3,5	Evaluating
CO-2	Understand the basic concepts of Partial Differential Equations and its applications.	1 <u>,2</u>	Understanding
CO-3	Discuss the properties of the Legendre polynomial and Bessel functions.	9	Creating
CO-4	Analyze the origin of first order partial differential equations and solving them using Charpit's method.	2,10	Analyzing
CO-5	Determine the solutions of the Homogenous equation with constant co-efficient and analytic co-efficient.	10	Evaluating

DSE 1(A)	CLASSICAL MECHA	NICS	18PEMA1A
Hrs / Week : 6	Hrs / Sem : 6 x 15 = 90	Hrs / Unit : 18	Credit : 4

CO No.	Upon completion of this Course, students will be able to :	PSO addressed	Blooms taxonomy classification
CO-1	State and prove Linear, Angular and Energy conservation theorem for a particle and a system of particles.	2,3	Evaluating
CO-2	Derive the Lagrangian equation using Hamilton's principle.	2,4	Creating
CO-3	Apply their skills in Hamilton's principle for various coordinate systems.	2	Applying
CO-4	Determine central force field in real life problems.	2,7	Evaluating
CO-5	Solve the Maxwell equations for simple configuration.	2,10	Applying, Creating

DSE 1(B)	DISCRETE MATHEMATICS.		18PEMA1B
Hrs / Week : 6	Hrs / Sem : 6 x 15 = 90	Hrs / Unit : 18	Credit : 4

CO No.	Upon completion of this Course, students will be able to :	PSO addressed	Blooms taxonomy classification
CO-1	Understand the basic principles of Boolean algebra, Logic and Set theory.	1	Understanding
CO-2	Examine logical arguments and logical constructs.	2	Analyzing
со-3	Apply their skills to describe computer programs in a formal Mathematical manner.	2,8	Applying
CO-4	Find out the logic statements using truth tables.	1,2	Remembering
CO-5	Solve discrete mathematics problems which involve permutations and combinations of a set.	2,5	Applying, Creating

II SEMESTER			
DSC 5 LINEAR ALGEBRA 18PCMA21			
Hrs / Week : 6	Hrs / Sem : 6 x 15 =90	Hrs / Unit :18	Credit :4

CO No.	Upon completion of this Course, students will be able to:	PSO addressed	Blooms taxonomy classification
CO-1	Understand the concepts of vector space and its geometric representation.	1	Understanding
CO-2	Determine the angle between vectors by using inner product.	5	Evaluating
CO-3	Prove there is a one to one correspondence between operators and matrices.	2 <u>.</u> 3	Evaluating
CO-4	Formulate the triangular form of a transformation.	2,10	Creating
CO-5	Solve linear equations using matrix.	2,9 <u>,</u> 10	Applying, Creating

	II SEMEST	'ER	
DSC 6 REAL ANALYSIS II 18PC			18PCMA22
Hrs / Week : 5	Hrs / Sem : 5x 15 =75	Hrs / Unit : 15	Credit : 4

CO No.	Upon completion of this Course, students will be able to :	PSO addressed	Blooms taxonomy classification
CO-1	Understand Riemann-Stieltjes integral concepts and their properties with examples.	1	Understanding
CO-2	Examine uniform convergence in sequence and series of functions.	2 <u>,3</u>	Analyzing
CO-3	Understand the concepts of continuity, integration and differentiation in functions.	1 <u>,7</u>	Understanding
CO-4	Apply and state the inverse function theorem.	2,3	Applying
CO-5	Explain the implicit function theorem and solve problems efficiently.	1,10	Evaluating

II SEMESTER			
DSC 7 LATEX AND MATLAB 18PCMA23			18PCMA23
Hrs / Week : 6 Hrs / Sem : 6 x 15 = 90 Hrs / Unit : 18 Credit : 4			

CO No.	Upon completion of this Course, students will be able to :	PSO addressed	Blooms taxonomy classification
CO-1	Summarize techniques in Latex for the preparation of printable document in an enhanced manner.	1	Understanding
CO-2	Apply their skills to type their project and thesis with Latex software.	2,8	Applying
CO-3	Develop skills to prepare paper in Journal format.	7,8	Applying
CO-4	Solve Mathematical equations using MATLAB software.	7,8	Applying, Creating
CO-5	Analyze the statistical survey using MATLAB.	6,8	Analyzing

II SEMESTER			
DSCP LATEX AND MATLAB 18PCMA2P1			
Hrs / Week : 6 Hrs / Sem : 6 x 15 = 90 Hrs / Unit : 18 Credit : 4			

CO No.	Upon completion of this Course, students will be able to:	PSO addressed	Blooms taxonomy classification
CO-1	Understand the image of mathematical function using MATLAB.	1,8	Understanding
CO-2	Create mathematical documents and reports using LaTex.	8	Creating
CO-3	Solve engineering problems using MATLAB.	2,8	Applying, Creating
CO-4	Solve differential equation using MATLAB.	2,8	Applying, Creating
CO-5	Create the beamer presentation using LaTex software.	7,8	Creating

DSE 2(A)

CALCULUS OF VARIATIONS AND INTEGRAL EQUATIONS

18PEMA2A

Hrs / Week : 4

Hrs / Sem : 4 x 15 =60

Hrs / Unit :12

Credit : 4

CO No.	Upon completion of this Course, students will be able to:	PSO addressed	Blooms taxonomy classification
CO-1	Understand the concepts of maxima and minima in calculus of variations.	1	Understanding
CO-2	Discuss the relation between differential and integral equations.	2 <u>,</u> 7	Creating
СО-3	Apply the principles of calculus of variations in derivation of some classical differential equations.	2 <u>,10</u>	Applying
CO-4	Solve isoperimetric problems of standard types and integral equations of several types for eligibility exams.	2,5	Applying, Creating
CO-5	Develop the problem-solving and analytical skills.	2,10	Applying

II SEMESTER			
DSE 2(B) NUMERICAL ANALYSIS 18PEMA2 B			
Hrs / Week : 4	Hrs / Sem : 4 x 15 =60	Hrs / Unit :12	Credit : 4

CO No.	Upon completion of this Course, students will be able to :	PSO addressed	Blooms taxonomy classification
CO-1	Find out the solution of transcendental and polynomial equation.	1	Remembering
CO-2	Solve system of equations using direct and iterative method.	2,10	Applying, Creating
CO-3	Apply Hermite and Spline interpolation.	2 <u>,9</u>	Applying
CO-4	Classify the concepts of Green's function.	10	Analyzing
CO-5	Solve the problems using various interpolation formulae.	2,10	Applying, Creating

IDC-1	ADVANCED DISCRET	E MATHEMATICS	18PIMA21
Hrs / Week : 3	Hrs / Sem : 3x 15 = 45	Hrs / Unit : 9	Credit : 3

CO	Upon completion of this Course, students will be	PSO	Blooms
No.	able to :	addressed	taxonomy
			classification
CO-1	Understand the basic principle of logic and set theory.	1	Understanding
CO-2	Recall the concepts of functions and relations in set	2	Remembering
	theory.		
CO-3	Construct simple mathematical proof.	2 <u>.</u> 3	Applying
CO-4	Understand the basic concepts of Graph theory.	1	Understanding
CO-5	Apply the Baye's theorem to find the conditional	2,5	Applying
	probability.		

DSC 8

GRAPH THEORY

18PCMA31

Hrs / Week : 6 Hr

Hrs / Sem : 6 x 15 = 90 Hrs / Unit : 18

Credit : 4

СО	Upon completion of this Course, students will be	PSO	Blooms
No.	able to :	addressed	taxonomy
			classification
CO-1	Understand the basic principles and concepts of graph	1	Understanding
	theory.		
CO-2	Recall the properties of graph theory which has diverse application in the area of Computer Science, Chemistry, Physics and Engineering.	2 <u>.4</u>	Remembering
CO-3	Analyze the fundamental results describing the	4	Analyzing
	behavior of graph properties.		
CO-4	Understand the concepts of planarity and colourability	1 <u>,4</u>	Understanding
	of graphs.		
CO-5	Evaluate the Ramsey number of various graphs.	10	Evaluating

DSC 9

COMPLEX ANALYSIS

18PCMA32

Hrs / Week : 6 Hrs

Hrs / Sem : 6 x 15 = 90 Hrs / Unit : 18 Credit : 4

СО	Upon completion of this Course,	PSO	Blooms taxonomy
No.	students will be able to :	addressed	classification
CO-1	Understand the notion of Riemann	1	Understanding
	integration and Cantor integration.		_
CO-2	Explain the geometric idea about	1 <u>,2</u>	Understanding
	conformal mappings.		
CO-3	Differentiate an analyticity and	2 <u>,9</u>	Analyzing
	differentiability of a function.		
CO-4	Solve the problems using power series	2,10	Applying, Creating
	expression of an analytic function.		
CO-5	Calculate definite integrals using the mean	2,10	Applying
	value property and Poisson formula.		

DSC 10	MEASURE THEORY ANI	D INTEGRATION	18PCMA33
Hrs / Week : 6	Hrs / Sem : 6 x 15 = 90	Hrs / Unit : 18	Credit : 4

CO No.	Upon completion of this Course, students will be able to:	PSO addressed	Blooms taxonomy classification
CO-1	Understand the concept of Lebesgue measure and measurable functions.	1	Understanding
CO-2	Differentiate between the Lebesgue and Riemann Integral.	7 <u>,</u> 10	Analyzing
CO-3	Summarize the functions of bounded variations.	1,2	Understanding
CO-4	Prove the Radon-Nikodym theorem and general convergence theorem.	2,3	Evaluating
CO-5	Apply extension theorems in problem solving.	2,10	Applying

DSC 11	OPERATIONS	RESEARCH	18PCMA34

Hrs /Week : 5 Hrs / Sem : 5 x 15 = 75 Hrs / Unit : 15 Credit : 4

СО	Upon completion of this Course, students will	PSO	Blooms
No.	be able to :	addressed	taxonomy
			classification
CO-1	Understand how to translate a real-world	1	Understanding,
	problem into a mathematical formulation.		Remembering
CO-2	Apply the mathematical tools to solve	2,5	Applying
	optimization problems.		
CO-3	Create a report that describes the model and the	6,7	Creating
	solving technique to analyze the results.		
CO-4	Solve the problems using special solution	2,8	Applying,
	algorithms.		Creating
CO-5	Make use of CPM and PERT techniques, to plan,	2,8	Applying
	schedule, and control project activities in real life		
	· · ·		
	situation.		

DSE 3(A)

DIFFERENTIAL GEOMETRY

18PEMA3A

Hrs / Week : 4 Hrs / Sem : 4 x 15 = 60 Hrs / Unit : 12 Credit : 4

CO No.	Upon completion of this Course, students will be able to :	PSO addressed	Blooms taxonomy classification
CO-1	Understanding the basic concepts in geometry of curves and surfaces in Euclidean space.	1	Understanding
CO-2	Solve typical problems associated with the theory of space curves.	2,10	Applying, Creating
CO-3	Define the concepts of Helicoids.	2	Remembering
CO-4	Utilize the idea of differential geometry for applications in theoretical physics.	2	Applying
CO-5	Summarize the properties of geodesics.	1	Understanding

DSE 3(B)

ANALYTICAL NUMBER THEORY

18PEMA3B

Hrs / Week : 4 Hrs / Sem : 4 x 15 = 60 Hrs / Unit : 12 Credit : 4

СО	Upon completion of this Course, students will	PSO	Blooms taxonomy
No.	be able to :	addressed	classification
CO-1	Explain mathematical terms relevant to prime	1	Understanding
	numbers and fundamental theorem of		
	Arithmetic.		
CO-2	State and prove fundamental theorems in	3	Evaluating
	analytical theory of numbers.		
CO-3	Apply Arithmetical functions to find out values	2,5	Applying
	in Number Theory.		
CO-4	Find out the average of Arithmetic functions	5	Remembering
	like $\varphi(n)$ and $\mu(n)$ and its applications.		
CO-5	Discuss elementary theorems on distribution of	10	Creating
	prime numbers.		

IDC-2NUMERICAL & STATISTICAL METHODS18PIMA31Hrs / Week : 3Hrs / Sem : 3x 15 = 45Hrs / Unit : 9Credit : 3

CO	Upon completion of this Course, students will be	PSO	Blooms
No.	able to :	addressed	taxonomy
			classification
CO-1	Solve algebraic and Transcendental equations.	1,2	Applying, Creating
<i>~~</i>			Creating
CO-2	Solve the system of linear equation using iterative	2,5	Applying,
	methods.		Creating
CO-3	Understand the various distributions like Binomial,	1,2,6	Understanding,
	Poisson and Normal distribution and discuss their		Applying
	applications.		
CO-4	Solve differential equations using various methods in	2,10	Applying,
	numerical differentiation and integration.		Creating
CO-5	Determine the correlation coefficient and rank	2,5	Evaluating
	correlation for numerical data.		-

	IV SEMESTER	
DSC 12	TOPOLOGY	18PCMA41
Hrs / Week : 6	Hrs / Sem : 6 x 15 = 90 Hrs / Unit : 18	Credit :4

СО	Upon completion of this Course,	PSO	Blooms taxonomy
No.	students will be able to :	addressed	classification
CO-1	Understand the concepts of topological	1	Understanding
	spaces.		
CO-2	Define the different types of topology on	2	Remembering
	any set.		
CO-3	Solve the problem by using the concepts	2,10	Applying, Creating
	of connectedness and compactness.		
CO-4	Explain the concepts of countability and	2	Remembering
	separation axioms in Topological spaces.		
CO-5	Analyze the different types of spaces like	2,9	Analyzing
	normal, regular, completely regular.		

IV SEMESTER			
DSC 13	FUNCTIONAL ANALYSIS	18PCMA42	
Hrs / Week : 6	Hrs /Sem : 6 x 15 = 90 Hrs / Unit : 18	Credit: 4	

CO No.	Upon completion of this Course, students will be able to :	PSO addressed	Blooms taxonomy
			classification
CO-1	Understand the fundamental concepts of functional analysis.	1	Understanding
CO-2	State and prove Hahn-Banach theorem and its applications.	2,3	Applying, Creating
CO-3	Solve integral equations using spectral theorems.	2,10	Applying, Creating
CO-4	Demonstrate the properties of an various operator and find out its eigen values.	2,7	Remembering, Understanding
CO-5	Relate the properties of operator theory with matrix theory.	2	Understanding

IV SEMESTER			
DSE 4(A)	Programming in C++ and	l Data Structures	18PEMA4A
Hrs / Week : 4	Hrs / Sem : 4 x 15 = 60	Hrs / Unit : 12	Credit : 4

CO No.	Upon completion of this Course, students will be able to :	PSO addressed	Blooms taxonomy classification
CO-1	Relate and understand the purpose of basic computer components.	1,2	Remembering, Understanding
CO-2	Organize 'C++' program, data types and operators and console I/O function.	2,8	Applying
CO-3	Identify the basic concepts of tokens, expressions and control structures-functions in C++.	2,7	Applying
CO-4	Apply the basic concepts of classes and objects.	2	Applying
CO-5	Apply the concept of extending classes- pointers, virtual functions and polymorphism.	2,8	Applying

V SEMESTER

DSEP-2(A)

PROGRAMMING IN C++ and

18PCMA4PA

DATA STRUCTURES

Hrs/Week: 6

Hrs / Sem : 6 x 15 = 90

Credit : 4

CO	Upon completion of this Course, students	PSO	Blooms
No.	will be able to :	addressed	taxonomy
			classification
CO-1	Understand the structures of classes for	1	Understanding
	performing the tasks.		
CO-2	Design and write a program for trigonometric functions.	8	Creating
CO-3	Define a class to represent a bank account.	2	Remembering
CO-4	Apply the constructors, and membership	2,7,8	Applying
	functions in program.		
CO-5	Interpret the concept of extending classes in	1,8	Understanding
	program.		

IV SEMESTER

DSE 4(B) JAVA PROGRAMMING 18PEMA4B

Hrs / Week : 4 Hrs / Sem : 4 x 15 = 60 Hrs / Unit : 12 Credit : 4

CO	Upon completion of this Course, students will	PSO	Blooms
No.	be able to :	addressed	taxonomy
			classification
CO-1	Understand the basic elements of a	1	Understanding
	programming language and to write Java		
	application programs using OOP principles and		
	proper program structuring.		
CO-2	Identify classes, objects, members of a class and	2	Applying
	relationships among them needed for a specific		
	problem.		
CO-3	Demonstrate the concepts of polymorphism and	2,8	Understanding
	inheritance.		
CO-4	Explain Java programs to implement error	1,7	Understanding
	handling techniques using exception.		
CO-5	Apply the Applet Class and create, run and	2,7	Applying
	execute Applets.		

IV SEMESTER

DSEP-2(B)	JAVA PROG	RAMMING.	18PEMA4PB
Hrs/Week: 6	Hrs / Sem : 6 x 15 = 90	Hrs / Unit : 18	Credit : 4

CO No.	Upon completion of this Course, students will be able to :	PSO addressed	Blooms taxonomy
CO-1	Develop an integrated environment to write, compile, run, and test simple object-oriented Java programs.	2,8	Applying
CO-2	Understand read and make elementary modifications to Java programs that solve real-world problems.	1,8	Understanding
CO-3	Identify and fix defects and common security issues in code.	2,7	Applying
CO-4	Evaluate input in a Java program.	7,8	Evaluating
CO-5	Apply and execute a Java program using Javadoc.	2,8	Applying